Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE in Chemistry (6CH05) Paper 01
General Principles of Chemistry II - Transition Metals and Organic Nitrogen Chemistry

edexcel

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code 6CH05_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	1. The only correct answer is C A is not correct because neither Al nor H has oxidation number +5	(1)
B is not correct because neither K nor Mn has oxidation number +5 D is not correct because neither Fe, C nor N has oxidation number +5		

Question Number	Correct Answer	Mark
$\mathbf{2}$	2. The only correct answer is A \boldsymbol{B} is not correct because I disproportionates from 0 to +5 and -1 \boldsymbol{C} is not correct because O disproportionates from -1 to -2 and 0 \boldsymbol{D} is not correct because Cu disproportionates from +1 to +2 and 0	(1)

Question Number	Correct Answer	Mark
$\mathbf{3}$	3. The only correct answer is C \boldsymbol{A} is not correct because zinc atoms would be oxidised by hydrogen ions	(1)
B is not correct because zinc is the negative electrode so does not gain electrons \boldsymbol{D} is not correct because zinc atoms lose electrons to hydrogen ions		

Question Number	Correct Answer	Mark
$\mathbf{4}$	4. The only correct answer is C \boldsymbol{A} is not correct because the electrode potential of the cell containing iron(II) ions is less positive than the one containing Vanadium (III) ions	(1)
\boldsymbol{B} is not correct because iron is a reducing agent	D is not correct because silver is a reducing agent	

Question Number	Correct Answer	Mark
$\mathbf{5}$	5. The only correct answer is A \boldsymbol{B} is not correct because there is no hydrogen gas present \boldsymbol{C} is not correct because the reaction must supply electrons \mathbf{D} is not correct because the reaction must supply electrons	(1)

Question Number	Correct Answer	Mark
$\mathbf{6}$	6. The only correct answer is B A is not correct because nickel(II) ions form a soluble complex with ammonia \boldsymbol{C} is not correct because nickel(II) ions form a soluble complex with ammonia D is not correct because nickel(II) hydroxide is not soluble in excess NaOH	(1)

Question Number	Correct Answer	Mark
$\mathbf{7}$	7. The only correct answer is D \boldsymbol{A} is not correct because the product is not $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ ions	(1)
\boldsymbol{B} is not correct because the product is not $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ ions \boldsymbol{C} is not correct because the charges are not balanced		

Question Number	Correct Answer	Mark
$\mathbf{8}$	8. The only correct answer is D \boldsymbol{A} is not correct because the end point could still be seen	(1)
B is not correct because the starch is not decomposed \boldsymbol{C} is not correct because the blue-black colour would be seen		

Question Number	Correct Answer	Mark
$\mathbf{9}$	9. The only correct answer is A \boldsymbol{B} is not correct because infrared spectroscopy does not measure bond length	(1)
\boldsymbol{C} is not correct because the enthalpy changes do not measure bond length	\boldsymbol{D} is not correct because the rates of reaction do not measure bond length	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	$\mathbf{1 0 . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~}$	(1)
	A is not correct because $\mathrm{SO}_{3} \mathrm{H}$ is substituted \boldsymbol{C} is not correct because $\mathrm{SO}_{3} \mathrm{H}$ is substituted \boldsymbol{D} is not correct because $\mathrm{SO}_{3} \mathrm{H}$ is substituted	

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	11. The only correct answer is B A is not correct because the electrophile which forms is $\mathrm{CH}_{3} \mathrm{CO}^{+}$ \mathbf{C} is not correct because the electrophile which forms is $\mathrm{CH}_{3} \mathrm{CO}^{+}$ \boldsymbol{D} is not correct because the electrophile which forms is $\mathrm{CH}_{3} \mathrm{CO}^{+}$	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	12. The only correct answer is C \boldsymbol{A} is not correct because there is no doublet in the spectrum	(1)
B is not correct because there is no sextet on the spectrum \boldsymbol{D} is not correct because there is no doublet in the spectrum		

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	13. The only correct answer is B \boldsymbol{A} is not correct because the bonds are too similar to be distinguished by infrared \boldsymbol{C} is not correct because the splitting patterns will be the same \boldsymbol{D} is not correct because the number of peaks in the low resolution spectra	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	14. The only correct answer is D \boldsymbol{A} is not correct because there is no alcohol or phenol to give the peak at above $3300 \mathrm{~cm}^{-1}$	(1)
	B is not correct because there is no alcohol or phenol to give the peak at above $3300 \mathrm{~cm}^{-1}$ \boldsymbol{C} is not correct because there is no alcohol or phenol to give the peak at above $3300 \mathrm{~cm}^{-1}$	

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	15. The only correct answer is A \boldsymbol{B} is not correct because it does not form an alkaline solution \boldsymbol{C} is not correct because it is not very soluble in water \boldsymbol{D} is not correct because it does not form an alkaline solution	(1)

Question Number	Correct Answer $\mathbf{1 6}$	16. The only correct answer is B \boldsymbol{A} is not correct because the property which is essential is that the capsule is water soluble to release the detergent
C is not correct because the property which is essential is that the capsule is water soluble to release the detergent	(1)	
D is not correct because the property which is essential is that the capsule is water soluble to release the detergent		

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	$\mathbf{1 7 .}$ The only correct answer is A \boldsymbol{B} is not correct because the OH and CONH 2 groups	
will not react to form a polymer		
\boldsymbol{C} is not correct because the number of $\left(\mathrm{CH}_{2}\right)$ groups		
o in the polymer is incorrect		
\mathbf{D} is not correct because the OH and NH_{2} groups will		
not react to form a polymer		

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	$\mathbf{1 8}$. The only correct answer is C A is not correct because 1 mol alcohol gives 4 mol CO so 4C are present \boldsymbol{B} is not correct because 1 mol alcohol gives 4 mol CO_{2} so 4C are present \boldsymbol{D} is not correct because 1 mol alcohol gives 4 mol CO_{2} so 4C are present	

Question Number	Correct Answer	Mark
$\mathbf{1 9 (a)}$	$\mathbf{1 9 (a) . \text { The only correct answer is C }}$A is not correct because theoretical yield $=$ $(2 \times 181 / 136)=2.66 \mathrm{~g}$ so \% yield $=(1.5 / 2.66) \times 100$ \boldsymbol{D} is not correct for the same reason	

Question Number	Correct Answer	Mark
$\mathbf{1 9 (b)}$	$\mathbf{1 9 (b) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$ \boldsymbol{A} is not correct because some product would remain dissolved in excess ethanol	(1)
B is not correct because the ethanol should be warmed until all the crude solid dissolves, which is not related to its boiling point		
C is not correct because slow filtration could cause crystallisation in the filter funnel		

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i)}$	Concentrated nitric acid $/ \mathrm{HNO}_{3}$ and concentrated sulfuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$	Nitric acid and concentrated sulfuric acid	(1)
	ALLOW Concentrated nitric and sulfuric acid(s) IGNORE References to temperature	Nitrous acid HNO_{2}	

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-} \\ & \mathrm{OR} \\ & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-} \text {and } \\ & \mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \\ & 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-} \end{aligned}$ IGNORE state symbols even if incorrect Curly arrows from on or within the circle to N of $\mathrm{NO}_{2}{ }^{+}$ ALLOW Curly arrow from anywhere within the hexagon curly arrow to any part of the $\mathrm{NO}_{2}{ }^{+}$including the + charge Intermediate structure including charge with horseshoe covering at least 3 C atoms and facing the tetrahedral carbon and some part of the + charge must be within the horseshoe Curly arrow from C-H bond to anywhere in the hexagon reforming the delocalised structure Correct Kekule structures score full marks IGNORE Any involvement of HSO_{4}^{-}in the final step	Curly arrow on or outside the hexagon Dotted bonds to H and NO_{2} unless clearly part of a 3D structure	(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i i i) ~}$	$\mathbf{X = \mathrm { C } _ { 6 } \mathrm { H } _ { 5 } \mathrm { NH } _ { 2 } / \text { phenylamine / aniline/ }}$aminobenzene/ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-} /$phenylammonium chloride/ aniline hydrochloride Reagents: $\mathrm{Sn} /$ tin and (concentrated) hydrochloric acid/ HCl (followed by NaOH$)$ ALLOW Iron/Fe for Sn IGNORE Mention of catalyst Second mark is independent of first(2)	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i v)}$	Reagents: Sodium nitrite/ potassium nitrite/ $\mathrm{NaNO}_{2} / \mathrm{KNO}_{2}$ and hydrochloric acid/ HCl ALLOW Nitrous acid / HNO_{2} and hydrochloric acid $/ \mathrm{HCl}$ (1)	Just H^{+}for an acid	(2)
	IGNORE concentration of acid Condition: temperature between $10\left({ }^{\circ} \mathrm{C}\right) /$ less than $10\left({ }^{\circ} \mathrm{C}\right)$		

Question Number	Acceptable Answers	Reject	Mark
20(b)	Equation using phenol, phenylamine or other compound with activated benzene ring and HCl as one product 2.g. Structure of dye including azo link / $-\mathrm{N}=\mathrm{N}$ - Rest of equation ALLOW TE on incorrect reagent provided $-\mathrm{N}=\mathrm{N}$ - linking two benzene rings Use of NaOH (as solvent for phenol) giving NaCl Any position of substitution on ring	Use of chlorobenzene/ nitrobenzene	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (c)}$	$\mathrm{Hydrochloric} \mathrm{acid} \mathrm{/} \mathrm{HCl} \mathrm{/} \mathrm{any} \mathrm{strong} \mathrm{acid/}$ $\mathrm{H}^{+}(\mathrm{aq})$	HCN	(1)
	OR NaOH followed by hydrochloric acid / HCl IGNORE concentration, addition of water	"NaOH with $\mathrm{HCl} "$	

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 0 (d) (i)}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{HCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$		(2)	
N_{2} as a product	(1)			
	Rest of the equation IGNORE state symbols even if incorrect.	(1)	O_{2} as a reagent	

Question Number	Acceptable Answers		Reject	Mark
20(d)(ii)	 ALLOW Kekule / $\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OH}) \mathrm{Br}_{3} / \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OHBr}_{3}$	(1)	monobromop henol	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i) ~}$	Electrons are removed from 4s (orbital) in each element (1)		(2)
	Shielding (by 3d electrons) is the same in each element OR Increase in nuclear charge/ proton number is balanced by increase in number of shielding/3d electrons	(1)	

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| *21(a)(ii) | MP1
 In Cr^{+}the (second) electron is lost from the 3d
 subshell
 and in V^{+}and Mn^{+}it is lost from the 4s
 subshell
 MP2 and MP3 | (1) | (3) |
| Any TwO of
 3d is closer to nucleus than 4s, harder to
 remove
 OR
 3d is not as well shielded as 4s, harder to
 remove
 OR
 3d is half full so relatively stable, harder to
 remove (1) | | | |

Question	Acceptable Answers			Reject	Mark
21(b)(i)	Ion	Oxidation number of chromium	Colour in aqueous solution	purple	(3)
	$\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{2+}$	+2	Blue		
	$\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}$	+3	Green ALLOW violet		
	$\mathrm{CrO}_{4}{ }^{2-}$	+6	Yellow		
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	+6	Orange		
	Oxidation nu Oxidation nu Oxidation nu ALLOW 1 mark for 2 marks for $2+$ for +2 e Dark/ light	colour for C colour for colour for rect respon orrect respo colour	$\begin{align*} & \left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+} \tag{1}\\ & \mathrm{O}_{4}^{2-} \tag{1}\\ & { }_{2} \mathrm{O}_{7}^{2-} \end{align*}$ (1) es ses		

Question Number	Acceptable Answers	Reject	Mark
*21(b)(ii)	MP1 (3)d orbitals are split/ (3)d subshells are (1) split (by the attached ligands) MP2		(4)
	Electrons are promoted (from lower to higher energy d orbital(s)/ levels OR Electrons are moved from lower to higher energy (d (orbital(s) / levels) ALLOW d-d transitions occur/ electrons are excited		
	(1) MP3 absorbing energy/ photons of a certain frequency (in the visible region) ALLOW Absorbing light MP4 Transmitted/ remaining/ reflected light is coloured/ is in the visible region ALLOW Complementary colour seen (The frequency of) transmitted/ remaining /reflected light/ is seen Penalise omission of (3)d once only. Ignore reference to electrons relaxing/dropping to the ground state	Emitted light	

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	MP1 Beaker with Zn electrode in $\mathrm{Zn}^{2+}(\mathrm{aq})$ and salt bridge and voltmeter MP2 beaker with Pt electrode in mixture of $\mathrm{Cr}^{2+}, \mathrm{Cr}^{3+}$ MP3 All solutions $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (with respect to the ions) and $T=298 \mathrm{~K}$ ALLOW Concentrations given for one beaker only 1 M for1 $\mathrm{mol} \mathrm{dm}^{-3}$ ALLOW diagram with Zn electrode on right. IGNORE References to pressure	Salt bridge not dipping into solution	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i v) ~}$	$\mathrm{Zn}{ }^{2+}(\mathrm{aq}) \mid \mathrm{Zn}(\mathrm{s})$ $E^{\ominus}=-0.76(\mathrm{~V})$ and $\left.\mathrm{Cr}^{3+}(\mathrm{aq})\right) \mid \mathrm{Cr}^{2+}(\mathrm{aq}) \quad E^{\ominus}=-0.41(\mathrm{~V})$ $E_{\text {cell }}^{\ominus}=(-0.41-(-0.76))$ $=(+) 0.35(\mathrm{~V})$ Correct answer including sign +0.35 with no working scores two Value of 0.35 with no sign and no working scores 1 No TE on incorrect data (2)		

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	$\begin{gathered} \mathrm{Cr}^{3+}(\mathrm{aq})+8 \mathrm{OH}^{-} \rightarrow \mathrm{CrO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}+ \\ 3 \mathrm{e}^{-} \end{gathered}$ IGNORE State symbols	$\begin{gathered} \mathrm{Cr}^{3+}(\mathrm{aq})+4 \mathrm{OH}^{-} \\ \rightarrow \mathrm{CrO}_{4}^{2-} \\ +4 \mathrm{H}^{+}+ \\ 3 \mathrm{e}^{-} \end{gathered}$	(1)

Question Number	Acceptable Answers	Reject	Mark
21(c)(ii)	$\begin{gathered} \mathbf{2 \mathrm { Cr } ^ { 3 + } (\mathrm { aq }) + \mathbf { 1 0 } \mathrm { OH } ^ { - } + 3 \mathrm { H } _ { 2 } \mathrm { O } _ { 2 }} \rightarrow \\ \mathbf{2 \mathrm { CrO } _ { 4 } ^ { 2 - } + \mathbf { 8 } \mathrm { H } _ { 2 } \mathrm { O }} \end{gathered}$ ALLOW TE on equation in (c)(i) using $4 \mathrm{OH}^{-}$: $\begin{array}{r} 2 \mathrm{Cr}^{3+}(\mathrm{aq})+2 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \\ 2 \mathrm{CrO}_{4}^{2-}+8 \mathrm{H}^{+} \end{array}$		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (d)}$	$2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$		(1)

(Total for Question 21 = 20 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)	Both a negative and a positive charge are present (in a neutral molecule)	Just "pole" or "region" for charge	(1)
OR ${\text { Both } \mathrm{COO}^{-} \text {and } \mathrm{NH}_{3}{ }^{+} \text {are present }}^{$ ALLOW "Ion with extra H $}$+ on amine group and one less H^{+}on carboxyl O" Formula showing the correct charges	Just an ion that acts as an acid or a base		

Question Number	Acceptable Answers	Reject	Mark
22(b)	 pH 1.0 pH 10.0 Ion at pH 1.0: with $\mathrm{NH}_{3}{ }^{+}$ Ion at pH 10.0 with COO^{-}	Charge on $\mathrm{CH}_{2} \mathrm{OH}$ group	(2)

Question Number	Acceptable Answers	Reject	Mark
22(c)	 CONH displayed Rest of molecule with extension bonds from C and N ALLOW 3 complete units Brackets round units and n following	Ester link partial repeat units	(2)

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	They rotate (the plane of polarization) of (plane-)polarised light OR They are optically active OR they have a chiral centre/ they are chiral/they have a chiral carbon/ they have optical isomers / they form enantiomers	(1)	

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	Esterification IGNORE condensation Neutralization/ salt formation /acid-base / protonation	(1)	Trans- esterification

Question Number	Acceptable Answers	Reject	Mark
22(d)(iii)	Ethanol/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ If name and formula are given both must be correct		(1)

Question Number	Acceptable Answers	Reject	Mark
22(d)(iv)	Hydrolysis Acid hydrolysis	Extra answers	(1)

Question Number	Acceptable Answers	Reject	Mark	
22(d)(v)	Carbon dioxide/ CO_{2}			(2)
	ALLOW			
$\mathrm{H}_{2} \mathrm{CO}_{3}$				
ammonium chloride/ $\mathrm{NH}_{4} \mathrm{Cl}$	(1)			
	ALLOW Ammonia/ NH_{3} (1)			
	ALLOW Aminomethanoic acid / $\mathrm{H}_{2} \mathrm{NCOOH}$ (max 1)			

(Total for Question 22 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
*23(a)	Transition metals have empty /partially filled d-orbitals (of suitable energy level) OR Group 1 metals such as Na do not have empty / partially filled d-orbitals (of (1) suitable energy level) Which can accept pairs of electrons	(2)	
(from ligands) OR Ligands can form dative covalent bonds into these (d) orbitals (into these empty orbitals)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i) ~}$	Ionic and dative covalent / co-ordinate ALLOW Ionic and dative	London forces	(1)

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	Geometric ALLOW cis-trans (isomers) / E-Z (isomers) The 2 Cl ligands may be beside each other or opposite each other / The $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ bond angle may be 90 or 180°. ALLOW diagrams IGNORE Lack of charge	Diagrams not looking at all 3D	(2)

Question Number	Acceptable Answers	Reject	Mark
23(c)	$\begin{align*} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CuCl}_{4}{ }^{2-}+} \\ & 6 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$ Ignore state symbols even if incorrect. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ Octahedral ALLOW Bi-pyramidal if accompanied by a diagram $\mathrm{CuCl}_{4}{ }^{2-} \quad$ Tetrahedral ALLOW Square planar	planar	(3)

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	Monodentate ligands use one lone pair in bonding OR Donate one pair of electrons (to the central ion) OR Form one dative covalent bond (1) Hexadentate ligands donate six lone pairs of electrons from (six different atoms in) the same molecule/ ion/ (to the central ion) OR Donate six pairs of electrons (to the central ion) OR Form six dative covalent bonds (1)	(2) lone pair	

Question Number	Acceptable Answers	Reject	Mark
*23(d)(ii)	2 moles of reactants go to 7 moles of products/ there is a large increase in the number of particles (going from left to right)	(2)	
This means $\Delta S($ system $)$ is larger/ more positive /higher (so reaction more likely to have a positive (1) $\Delta S_{\text {total and larger Kc) }}$ (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i) ~}$	$(0.22 \times 100 / 2.00)=\mathbf{1 1 (\%)}$ IGNORE sf except 1sf		$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	$\begin{align*} & {\mathrm{Mol} \mathrm{MnO}_{4}^{-}=(36.60 \times}_{0.0100 / 1000)}^{=\mathbf{3 . 6 6} \mathbf{~ x ~ 1 0 - 4}} \\ & =1 \end{align*}$ Mol ethanedioate reacting $=$ $\begin{align*} & \left(3.66 \times 10^{-4} \times 5 / 2\right) \\ & =9.15 \times 10^{-4} \tag{1} \end{align*}$ Mass ethanedioate $=$ $\left(9.15 \times 10^{-4} \times 88\right)$ $\begin{equation*} =0.0805 \mathrm{~g} \tag{1} \end{equation*}$ \% ethanedioate $=$ $(0.0805 / 0.150 \times 100)$ $=53.68$ IGNORE sf except 1sf		(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i i i) ~}$	Because ethanedioate reacts with manganate((VII)) ions		(1)

Question	Acceptable Answers			Reject	Mark
23(e)(v)					(2)
	Species	Number of moles in 100 g	Mole ratio		
	water	0.611	3		
	ethanedioate ions	0.61	3		
	iron	0.204	1		
	potassium	0.61	3		
	Number of moles and ratio for water and iron Number of moles and ratio for ethanedioate and potassium				

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (v i)}$	$\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ ALLOW $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{3-}$		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (v i i)}$	Two bonds shown, one from each COO^{-}		

(Total for Question 23 = 23 marks)
Total for Section C = 70 MARKS

TOTAL FOR PAPER = 90 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

